Assessment Planning and Next Steps

Purushotham V. Bangalore Department of Computer Science University of Alabama at Birmingham

Assessment Goals

- Identify applications and input decks that are representative of ongoing and future communication challenges,
- Understand the qualitative and quantitative needs of these applications,
- Assemble public test suites based on this assessment to drive future center and broader community research on optimizing HPC communication systems

Application Characteristics

- Capture communication challenges faced by the broad range of DOE applications on Exascale architectures
- Identify MPI primitives and their common usage, including point-to-point, collective, and one-sided communication
- Represent inter-node communication patterns used by realistic applications, including neighbor halo exchange, static irregular, and dynamic irregular communication
- Express code complexity of full application frameworks and simplified proxy and mini-applications
- Represent relevant programming frameworks and languages

IRMINGHAM

Cover NNSA-relevant application areas

Application Selection Process

- Examined
 - ECP proxy application suite
 - 100+ open source MPI applications
- Narrowed this down to 40 DOE production applications and proxy or mini-applications
- Further discussion with TST team and NNSA lab collaborators to understand lab application needs
 - Identify production applications with communication challenges
 - Identify proxy or mini-applications that are representative of these production applications

Production & Proxy/mini Apps, I

Application	Lab	Availability	Priority	Description
Miniapp				
LLNL CFD/Me-	LLNL	EC	2	ALE3D, Nike3d, etc.
chanics Apps				
Comb		Open	1	GPU stencil communication mini-
				application
EMPIRE	SNL	EC	3	Hybrid PIC Electrodynamics frame-
				work
EMPIRELite	SNL	In devel	2	Forthcoming EAR99 version
RefMaxwell	SNL	Open	1	Trilinos AMG solver used in EMPIRE
ExaMPM	ECP-COPA	Open	1	Proxy for EMPIRE particle push
HIGRAD	LANL	EC	1	Shock CFD application
Fiesta	UNM	Open	1	Partial open reimplementation &
				modernization of key HIGRAD fea-
				tures
MERCURY	LLNL	EC	3	Monte Carlo Radiation Dynamics
Quicksilver	LLNL	Open	2	Simplified Monte Carlo Transport
				Proxy

Production & Proxy/mini Apps, II

Application Miniapp	Lab	Availability	Priority	Description
PARTISN	LANL	EC	3	Neutron transport; DesignForward traces available
SNAP		Open	2	Proxy of PARTISN compute/commu- nication patterns
SPARC	SNL	EC	3	Reacting and non-reacting hypersonic CFD code
MiniAero		Open	2	Unstructured Navier-Stokes solver mini-app
xRage	LANL	EC	3	Radiation Transport/Hydrodynamics Framework
CLAMR		Open	1	2D Cell-based adaptive mesh refine- ment mini-app.
EAP Proxy		In devel	2	Forthcoming xRage proxy application

Assessment Phases

Each phase involves modeling, evaluating, and optimizing applications that:

- I. use predominantly point-to-point and nearestneighbor communication on both CPU and GPU-based systems
- II. use predominantly collective communication primitives
- III. are based on adaptive algorithms and/or use complex communication patterns

Initial Assessment Results

- Preliminary static analysis of a wide range of ECP proxy applications that was conducted prior to CUP-ECS center initiation
- Formative qualitative assessment of the Priority-1 applications identified earlier
- Initial assessment of the ability of MPI nearest neighbor collectives to support a higher-level irregular halo communication primitive that our qualitative assessment showed was common in some DOE applications and frameworks

Outstanding Issues/Challenges

- Feedback on appropriateness of production and proxy/mini applications selected for assessment
- Assistance with identifying unlimited release input decks that expose relevant communication system issues in export controlled applications
- Recommendations on test platforms for qualitative assessment activities and details on upcoming Exascale architectures (e.g., AMD GPUs)

Open Questions

- 1) Is the application coverage sufficient and representative of NNSA application areas?
- 2) Do the proxy/mini applications represent the corresponding production applications with appropriate input decks?
- 3) Do we have input decks available for both production and proxy applications?

Application Miniapp	Lab	Availability	Priority	Description
LLNL CFD/Me- chanics Apps	LLNL	EC	2	ALE3D, Nike3d, etc.
Comb		Open	1	GPU stencil communication mini- application
EMPIRE	SNL	EC	3	Hybrid PIC Electrodynamics frame- work
EMPIRELite	SNL	In devel	2	Forthcoming EAR99 version
RefMaxwell	SNL	Open	1	Trilinos AMG solver used in EMPIRE
ExaMPM	ECP-COPA	Open	1	Proxy for EMPIRE particle push
HIGRAD	LANL	EC	1	Shock CFD application
Fiesta	UNM	Open	1	Partial open reimplementation & modernization of key HIGRAD fea- tures
MERCURY	LLNL	EC	3	Monte Carlo Radiation Dynamics
Quicksilver	LLNL	Open	2	Simplified Monte Carlo Transport Proxy
PARTISN	LANL	EC	3	Neutron transport; DesignForward traces available
SNAP		Open	2	Proxy of PARTISN compute/commu- nication patterns
SPARC	SNL	EC	3	Reacting and non-reacting hypersonic CFD code
MiniAero		Open	2	Unstructured Navier-Stokes solver mini-app
xRage	LANL	EC	3	Radiation Transport/Hydrodynamics Framework
CLAMR		Open	1	2D Cell-based adaptive mesh refine- ment mini-app.
EAP Proxy		In devel	2	Forthcoming xRage proxy application

Q1: Application Areas Represented

- Computational fluid dynamics
- Electromagnetic plasm simulations
- Atmospheric modeling
- Monte Carlo radiation dynamics
- Neutron transport
- Reacting and non-reacting hypersonic CFD
- Radiation transport/hydrodynamics

Q2: Production vs. Proxy/Mini Apps

Example 1:

EMPIRE	SNL	EC	3	Hybrid PIC Electrodynamics frame- work
EMPIRELite	SNL	In devel	2	Forthcoming EAR99 version
RefMaxwell	SNL	Open	1	Trilinos AMG solver used in EMPIRE
ExaMPM	ECP-COPA	Open	1	Proxy for EMPIRE particle push

Example 2:

xRage	LANL	EC	3	Radiation Transport/Hydrodynamics
				Framework
CLAMR		Open	1	2D Cell-based adaptive mesh refine-
				ment mini-app.
EAP Proxy		In devel	2	Forthcoming xRage proxy application

Open Questions

- 1) Is the application coverage sufficient and representative of NNSA application areas?
- 2) Do the proxy/mini applications represent the corresponding production applications with appropriate input decks?
- 3) Do we have input decks available for both production and proxy applications?

Questions and Discussion

